Black Hat: How to make and deploy malicious USB keys

Spread them around public places and about half of them will get plugged into victim’s computers

USB keys were famously used as part of the Stuxnet attack on the Iranian nuclear program and for good reason: it’s got a high rate of effectiveness, according to a researcher at Black Hat 2016.

Of 297 keys spread around the University of Illinois Urbana Champaign 45% were not only plugged into victims’ computers but the victims then clicked on links in files that connected them to more malware, says Elie Burstzein, a Google researcher who presented the results.

+More on Network World: Black Hat: 9 free security tools for defense & attacking | Follow all the stories from Black Hat 2016 +

That rate was pretty constant regardless of where the keys were dropped and what they looked like, he says. Keys were left in parking lots, common rooms, hallways, lecture halls and on lawns. Some had no labels but others did that said confidential and exam answers. Some had metal door keys attached on a ring and some had door keys plus a tab with an address and phone number.

More than half of those that were opened were opened within the first 10 hours.

Twenty-one percent of those who plugged in the devices then took a survey to say why they did. Sixty-eight percent said they wanted to return the drives and 18% said they were just curious and the rest had various other reasons.

What were they curious about? Pictures were consistently popular at 33% to 45% depending on the type of key that was picked up. Resumes were about as popular as photos with a spike in interest to 53% for those keys that were unlabeled. Other documents not so much.

Burstzein says building the keys was not trivial. The team he worked with had to figure out how to make a device small enough to fit into a key case, create a mold for the case, pour the resin, figure out how to unmold it so it had a smooth look and trim it to appear professional. It took weeks to perfect the techniques. Each one cost about $40.

The team also spent a lot of time writing code for the keys that could figure out what operating system was running on the machine they were plugged into. One test was a shell script that tried to lock the scroll lock key. If it worked, it was a Windows machine.

It was difficult to test the timing between commands and know they were successfully executed so they used caps-lock toggling as an indicator. When a command was successful, it would toggle the switch as a feedback bit, he says.

The code used reverse shell to get thorough the firewalls, scripting language and obfuscation to avoid antivirus detection, used a payload that delivered a maximum 62.5 keystrokes per second and used metasploit to act as a command and control server.

Preventing USB key attacks isn’t easy. The best methods are to educate users not to plug them in, block their use altogether on machines or restricting use.

He’s posted a how-to on building the keys and the code to load on them.

Join the CSO newsletter!

Error: Please check your email address.

Tags black hat

More about Google

Show Comments

Featured Whitepapers

Editor's Recommendations

Solution Centres

Stories by Tim Greene

Latest Videos

  • 150x50

    CSO Webinar: Will your data protection strategy be enough when disaster strikes?

    Speakers: - Paul O’Connor, Engagement leader - Performance Audit Group, Victorian Auditor-General’s Office (VAGO) - Nigel Phair, Managing Director, Centre for Internet Safety - Joshua Stenhouse, Technical Evangelist, Zerto - Anthony Caruana, CSO MC & Moderator

    Play Video

  • 150x50

    CSO Webinar: The Human Factor - Your people are your biggest security weakness

    ​Speakers: David Lacey, Researcher and former CISO Royal Mail David Turner - Global Risk Management Expert Mark Guntrip - Group Manager, Email Protection, Proofpoint

    Play Video

  • 150x50

    CSO Webinar: Current ransomware defences are failing – but machine learning can drive a more proactive solution

    Speakers • Ty Miller, Director, Threat Intelligence • Mark Gregory, Leader, Network Engineering Research Group, RMIT • Jeff Lanza, Retired FBI Agent (USA) • Andy Solterbeck, VP Asia Pacific, Cylance • David Braue, CSO MC/Moderator What to expect: ​Hear from industry experts on the local and global ransomware threat landscape. Explore a new approach to dealing with ransomware using machine-learning techniques and by thinking about the problem in a fundamentally different way. Apply techniques for gathering insight into ransomware behaviour and find out what elements must go into a truly effective ransomware defence. Get a first-hand look at how ransomware actually works in practice, and how machine-learning techniques can pick up on its activities long before your employees do.

    Play Video

  • 150x50

    CSO Webinar: Get real about metadata to avoid a false sense of security

    Speakers: • Anthony Caruana – CSO MC and moderator • Ian Farquhar, Worldwide Virtual Security Team Lead, Gigamon • John Lindsay, Former CTO, iiNet • Skeeve Stevens, Futurist, Future Sumo • David Vaile - Vice chair of APF, Co-Convenor of the Cyberspace Law And Policy Community, UNSW Law Faculty This webinar covers: - A 101 on metadata - what it is and how to use it - Insight into a typical attack, what happens and what we would find when looking into the metadata - How to collect metadata, use this to detect attacks and get greater insight into how you can use this to protect your organisation - Learn how much raw data and metadata to retain and how long for - Get a reality check on how you're using your metadata and if this is enough to secure your organisation

    Play Video

  • 150x50

    CSO Webinar: How banking trojans work and how you can stop them

    CSO Webinar: How banking trojans work and how you can stop them Featuring: • John Baird, Director of Global Technology Production, Deutsche Bank • Samantha Macleod, GM Cyber Security, ME Bank • Sherrod DeGrippo, Director of Emerging Threats, Proofpoint (USA)

    Play Video

More videos

Blog Posts

Market Place