MIT researchers: Network pros could learn a lot from ants

Ants’ random stumbling around and bumping into each other is actually good model for polling networks of sensors

How ants decide where to move their nests may hold lessons for computer scientists seeking efficient ways to gather data from distributed networks of sensors, according to MIT researchers.

It turns out that the frequency with which explorer ants bump into each other as they wander around looking for a new home for their colony is a pretty good indicator of how many other explorer ants are investigating the same site.

+More on Network World: What’s hot at Cisco Live+

When enough convene in one area, the workers in the ant colony pick up the sedentary queen ant and carry her to the chosen location, says Cameron Musco, an MIT graduate student in electrical engineering and computer science and a co-author of a theoretical paper that examines the math behind why this behavior is an efficient way to estimate the density of a population.

Apparently their roaming and chance bumping into each other – which the researchers call random walks – helps give the ants a sense of whether a critical mass of their colleagues are also interested the new site, he says.

Musco and his colleagues imitated the ants’ behavior with a mathematical model of random walks in which an area is divided up into a grid of nodes, each node connected to a set of other nodes. In the random walk their model ants can move to any other node that is connected to the one where they are located, including the one they just left.

Relatively quickly, the frequency with which they run into other ants offers up a reliable estimate of how many other ants are in the area, according to the algorithm the team developed, he says.

This theory can be applied to ad hoc networks of sensors to efficiently gather data. For instance, sensors gathering data about humidity could pass a token to each other in a random-walk fashion and after a while one of the sensors could send back a tally of how many registered humidity breaking a certain threshold. That would give a reliable indication of whether humidity had reached a certain level in that area, he says.

Also, the method would require no central hub connecting all the sensors, streamlining the network and simplifying communication.

He says random walks can produce estimates about as accurate as random sampling, which is polling a set of randomly chosen nodes in a network. That makes the method useful in networks where it’s impossible to randomly sample because there is no comprehensive list of elements in the network.

For example, it could be used if someone wanted to find the political leanings of members of a social network for which there is no central list available, making it impossible to create a random sample, But a random walk could deliver the information by moving from an individual to that person’s contacts, to their contacts and so on, tallying how often they run into Democrats and Republicans.

Musco says his group at MIT’s Computer Science and Artificial Intelligence Laboratory try to find behaviors in biology that can be applied to computer science and vice versa. In this case the ants’ behavior has a useful application for computer scientists. The flip side is that the algorithm the researchers developed helps bolster biologists’ hypotheses about what explorer ants are up to when they move around seeking a new nesting site.

Join the CSO newsletter!

Error: Please check your email address.

More about CiscoMIT

Show Comments

Featured Whitepapers

Editor's Recommendations

Solution Centres

Stories by Tim Greene

Latest Videos

  • 150x50

    CSO Webinar: Will your data protection strategy be enough when disaster strikes?

    Speakers: - Paul O’Connor, Engagement leader - Performance Audit Group, Victorian Auditor-General’s Office (VAGO) - Nigel Phair, Managing Director, Centre for Internet Safety - Joshua Stenhouse, Technical Evangelist, Zerto - Anthony Caruana, CSO MC & Moderator

    Play Video

  • 150x50

    CSO Webinar: The Human Factor - Your people are your biggest security weakness

    ​Speakers: David Lacey, Researcher and former CISO Royal Mail David Turner - Global Risk Management Expert Mark Guntrip - Group Manager, Email Protection, Proofpoint

    Play Video

  • 150x50

    CSO Webinar: Current ransomware defences are failing – but machine learning can drive a more proactive solution

    Speakers • Ty Miller, Director, Threat Intelligence • Mark Gregory, Leader, Network Engineering Research Group, RMIT • Jeff Lanza, Retired FBI Agent (USA) • Andy Solterbeck, VP Asia Pacific, Cylance • David Braue, CSO MC/Moderator What to expect: ​Hear from industry experts on the local and global ransomware threat landscape. Explore a new approach to dealing with ransomware using machine-learning techniques and by thinking about the problem in a fundamentally different way. Apply techniques for gathering insight into ransomware behaviour and find out what elements must go into a truly effective ransomware defence. Get a first-hand look at how ransomware actually works in practice, and how machine-learning techniques can pick up on its activities long before your employees do.

    Play Video

  • 150x50

    CSO Webinar: Get real about metadata to avoid a false sense of security

    Speakers: • Anthony Caruana – CSO MC and moderator • Ian Farquhar, Worldwide Virtual Security Team Lead, Gigamon • John Lindsay, Former CTO, iiNet • Skeeve Stevens, Futurist, Future Sumo • David Vaile - Vice chair of APF, Co-Convenor of the Cyberspace Law And Policy Community, UNSW Law Faculty This webinar covers: - A 101 on metadata - what it is and how to use it - Insight into a typical attack, what happens and what we would find when looking into the metadata - How to collect metadata, use this to detect attacks and get greater insight into how you can use this to protect your organisation - Learn how much raw data and metadata to retain and how long for - Get a reality check on how you're using your metadata and if this is enough to secure your organisation

    Play Video

  • 150x50

    CSO Webinar: How banking trojans work and how you can stop them

    CSO Webinar: How banking trojans work and how you can stop them Featuring: • John Baird, Director of Global Technology Production, Deutsche Bank • Samantha Macleod, GM Cyber Security, ME Bank • Sherrod DeGrippo, Director of Emerging Threats, Proofpoint (USA)

    Play Video

More videos

Blog Posts

Market Place