Five top security threats to data centres – and how to counter them

Author: Greg Barnes, Managing Director, ANZ, 
A10 Networks

Every day, attackers conspire to take down applications and steal data, leaving data centre infrastructure in the crosshairs. Storing an organisation’s most valuable and most visible assets - its web, DNS, database and email servers – data centres have become the number one target of cyber criminals, hacktivists and state-sponsored attackers.

Whether seeking financial gain, competitive intelligence or notoriety, attackers are carrying out their assaults using a range of weapons. The top five most dangerous threats to a data centre are:

  1. DDoS attacks
  2. Web application attacks
  3. DNS infrastructure: attack target and collateral damage
  4. SSL-induced security blind spots
  5. Brute force and weak authentication

To counter these threats, organisations need a solution that can lock down their data centres. Otherwise they risk a high-profile data breach, downtime or even brand damage.

1. DDoS attacks

Servers are a prime target for distributed denial of service (DDoS) attacks aimed at disrupting and disabling essential Internet services. While web servers have been at the receiving end of DDoS attacks for years, attackers are now exploiting web application vulnerabilities to turn web servers into ‘bots’. They use these captive servers to attack other websites.

By leveraging web, DNS and NTP servers, attackers can amplify the size and the strength of DDoS attacks. While servers will never replace traditional PC-based botnets, their greater compute capacity and bandwidth enable them to carry out destructive attacks - one server could equal the attack power of hundreds of PCs.

With more and more DDoS attacks launched from servers, it’s not surprising that the size of attacks has grown sharply. Between 2011 and 2013, the average size of DDoS attacks escalated surged from 4.7 to 10 Gbps.

Worse, there has been the staggering increase in the average packets per second in typical DDoS attacks; attack rates skyrocketed 1,850 percent to 7.8 Mpps between 2011 and 2013. At the current trajectory, DDoS attacks could reach 75 Mpps in 2015 - powerful enough to incapacitate most standard networking equipment.

DDoS for hire services, often called ‘booters’, have mushroomed too. Many advertise their capabilities in YouTube videos and forum posts. While some masquerade as ‘stress testing’ services, many boldly claim to ‘take enemies offline’ or ‘eliminate competitors’. Such services enable virtually any individual or organisation to execute a DDoS attack.

2. Web application attacks

Cyber criminals also launch web attacks like SQL injection, cross-site scripting (XSS) and cross-site request forgery (CSRF), trying to break into applications and steal data for profit. Increasingly, attackers target vulnerable web servers and install malicious code in order to transform them into DDoS attack sources.

Read more: A World without Identity and Access Governance

Some 98 percent of all applications currently have or have had vulnerabilities, and the median number of vulnerabilities per application was 20 in 2014, according to a 2015 Trustwave Global Security Report.

Today’s most dangerous application threats, like SQL injection and cross-site scripting, aren’t new but they are still easy to perform and lethally effective. Tools like the Havij SQL injection tool enable hackers to automate their attack processes and quickly exploit vulnerabilities.

The recent wave of web attacks on CMS applications has also revealed a gaping hole in the strategy to lock down applications by writing secure code. Because CMS applications are usually developed by third parties, organisations can’t rely on the protection of secure coding. In 2013, 35 per cent of all breaches were caused by web attacks.  More than ever, organisations need a proactive defence to block web attacks and ‘virtually patch’ vulnerabilities.

3. DNS infrastructure

DNS servers have become a top attack target for two reasons. First, taking DNS servers offline is an easy way for attackers to keep thousands or millions of Internet subscribers from accessing the Internet. If attackers incapacitate an ISP’s DNS servers, they can prevent the ISP’s subscribers from resolving domain names, visiting websites, sending email and using other vital Internet services.

Secondly, attackers can exploit DNS servers to amplify DDoS attacks. In DNS reflection attacks, attackers spoof the IP address of their real attack target. They send queries that instruct the DNS server to recursively query many DNS servers or to send large responses to the victim. As a result, powerful DNS servers drown the victim’s network with DNS traffic. Even when DNS servers are not the ultimate target of the attack, they can still suffer downtime and outages as the result of a DNS reflection attack.

4. SSL-induced blind spots

To prevent the continuous stream of malware and intrusions in their networks, enterprises need to inspect incoming and outgoing traffic for threats. Unfortunately, attackers are increasingly turning to encryption to evade detection.

Read more: In omen for DDoS-hit Australia, new reflection attacks leverage third-party services

With more and more applications supporting SSL – over 40 percent of applications can use SSL or change ports – SSL encryption represents an enormous crater that malicious actors can exploit.

While many firewalls, intrusion prevention and threat prevention products can decrypt SSL traffic, they can’t keep pace with growing SSL encryption demands. The transition from 1024- to 2048-bit SSL keys has burdened security devices because 2048-bit certificates require approximately 6.3 times more processing power to decrypt. With SSL certificate key lengths continuing to increase, many security devices are collapsing under increased decryption demands.

For end-to-end security, organisations need to inspect outbound SSL traffic originating from internal users, and inbound SSL traffic originating from external users to corporate-owned application servers to eliminate the blind spot in corporate defences. NSS Labs found that eight leading next-generation firewall vendors experienced significant performance degradation when decrypting 2048-bit encrypted traffic. NSS Labs asserted that it had “concerns for the viability of SSL inspection in enterprise networks without the use of dedicated SSL decryption devices.”

Clearly organisations need a high-powered solution to intercept and decrypt SSL traffic, offloading intensive SSL processing from security devices and servers.

5. Brute force and weak authentication

Applications often use authentication to verify users’ identity, allowing application owners to restrict access to authorised users and customise content based on user identity. Unfortunately, many enforce only single-factor, password-based authentication. This exposes them to a host of threats, from simple password guessing and stolen credentials to automated brute force attacks from password-cracking tools.

Many users select the same password for multiple accounts, so when one is compromised, all others are at risk. Within hours of a breach, hackers will crack stolen password lists, even password hashes, and use them to break into other online accounts.

Two-factor authentication can drastically reduce the risk of password cracking. Combining passwords with out-of-band authentication such as SMS messages to mobile devices or with hardware or software tokens greatly decreases the risk of brute force or password cracking. In addition, user context, such as a user’s browser and operating system or a user’s geographic location, can help to identify fraudulent activity. Application owners can build advanced rules to identify high-risk users or password-cracking tools, to safeguard user accounts.

Read more: The week in security: CSO confidence declining; endpoint security in “sorry state”

Simply rolling out and managing authentication across many different web applications can be daunting, while setting up client authentication schemes for dozens of applications entails costly and time-consuming development work. So organisations need an integrated solution that can centrally manage authentication services and block users with repeated failed login attempts.

ADCs offer multiple protection

To shield data centre infrastructure from attack, organisations need a solution that can mitigate a multitude of threat vectors and still deliver unmatched performance. Application delivery controllers (ADCs) can help organisations to safeguard their data centre infrastructure. Deployed in the heart of the data centre, ADCs can block attacks, intercept and inspect encrypted traffic and prevent unauthorised access to applications.

Next-generation ADCs offer the following defences to shield data centre infrastructure from emerging threats: DDoS protection, Web application firewall (WAF), DNS application firewall (DAF), SSL insight and SSL Offload, and application access management for authentication.

Read more: Top news sites abused in massive malicious ad push

Organisations should evaluate the security features of ADCs carefully to make sure they can mitigate data centre risks effectively. They should seek a product line helps to protect servers and applications from data centre risks, while still providing unmatched application performance. An ADC that includes a comprehensive set of security features at no additional cost can be a bonus.

Feeling social? Follow us on Twitter and LinkedIn Now!

Join the CSO newsletter!

Error: Please check your email address.

Tags security threatsDNS infrastructuretrustwaveWeb applicationddosdata centresSSL-inducedweb application attacksDDoS attacksA10 Networks

More about ADCCMSCSOTrustwaveTwitter

Show Comments

Featured Whitepapers

Editor's Recommendations

Solution Centres

Stories by Greg Barnes

Latest Videos

  • 150x50

    CSO Webinar: The Human Factor - Your people are your biggest security weakness

    ​Speakers: David Lacey, Researcher and former CISO Royal Mail David Turner - Global Risk Management Expert Mark Guntrip - Group Manager, Email Protection, Proofpoint

    Play Video

  • 150x50

    CSO Webinar: Current ransomware defences are failing – but machine learning can drive a more proactive solution

    Speakers • Ty Miller, Director, Threat Intelligence • Mark Gregory, Leader, Network Engineering Research Group, RMIT • Jeff Lanza, Retired FBI Agent (USA) • Andy Solterbeck, VP Asia Pacific, Cylance • David Braue, CSO MC/Moderator What to expect: ​Hear from industry experts on the local and global ransomware threat landscape. Explore a new approach to dealing with ransomware using machine-learning techniques and by thinking about the problem in a fundamentally different way. Apply techniques for gathering insight into ransomware behaviour and find out what elements must go into a truly effective ransomware defence. Get a first-hand look at how ransomware actually works in practice, and how machine-learning techniques can pick up on its activities long before your employees do.

    Play Video

  • 150x50

    CSO Webinar: Get real about metadata to avoid a false sense of security

    Speakers: • Anthony Caruana – CSO MC and moderator • Ian Farquhar, Worldwide Virtual Security Team Lead, Gigamon • John Lindsay, Former CTO, iiNet • Skeeve Stevens, Futurist, Future Sumo • David Vaile - Vice chair of APF, Co-Convenor of the Cyberspace Law And Policy Community, UNSW Law Faculty This webinar covers: - A 101 on metadata - what it is and how to use it - Insight into a typical attack, what happens and what we would find when looking into the metadata - How to collect metadata, use this to detect attacks and get greater insight into how you can use this to protect your organisation - Learn how much raw data and metadata to retain and how long for - Get a reality check on how you're using your metadata and if this is enough to secure your organisation

    Play Video

  • 150x50

    CSO Webinar: How banking trojans work and how you can stop them

    CSO Webinar: How banking trojans work and how you can stop them Featuring: • John Baird, Director of Global Technology Production, Deutsche Bank • Samantha Macleod, GM Cyber Security, ME Bank • Sherrod DeGrippo, Director of Emerging Threats, Proofpoint (USA)

    Play Video

  • 150x50

    IDG Live Webinar:The right collaboration strategy will help your business take flight

    Speakers - Mike Harris, Engineering Services Manager, Jetstar - Christopher Johnson, IT Director APAC, 20th Century Fox - Brent Maxwell, Director of Information Systems, THE ICONIC - IDG MC/Moderator Anthony Caruana

    Play Video

More videos

Blog Posts

Market Place