Researchers reveal methods behind car hack at Defcon

They plan to release a research paper and all the custom tools they developed

Two security researchers at Defcon on Friday revealed the methods they used to hack into car computers and take over the steering, acceleration, brakes and other important functions.

Security researchers Charlie Miller (left) and Chris Valasek (right) explaining how they hacked into car computers
Security researchers Charlie Miller (left) and Chris Valasek (right) explaining how they hacked into car computers

Charlie Miller, a security engineer at Twitter, and Chris Valasek, director of security intelligence at IOActive, spent 10 months researching how they could hack into the network of embedded computer systems called electronic control units (ECUs) used in modern cars and see what they could do once they gained access to it.

Their test cars were a 2010 Ford Escape and a 2010 Toyota Prius.

Some of the things they were able to achieve by hooking a laptop to the ECU communications network and injecting rogue signals into it included disabling the brakes while the car was in motion, jerking the steering wheel, accelerating, killing the engine, yanking the seat belt, displaying bogus speedometer and fuel gauge readings, turning on and off the car's lights, and blasting the horn.

The researchers also found a way to achieve persistent attacks by modifying the ECU firmware to send rogue signals even when they were no longer physically connected to the control units.

A research paper explaining how the hacking was done was shared with Ford and Toyota a few weeks before the Defcon presentation, the researchers said.

Toyota responded that it didn't consider this to be car hacking and that the company's security efforts are focused on preventing remote attacks from outside the car, not those that involve physically accessing the control system, Miller and Valasek said.

The goal of the research was to see what could be done when hackers gain access to the ECU network, known as the controller area network bus, the researchers said. It doesn't matter if it's done locally or remotely; access to a single ECU provides access to the whole network and gives the ability to inject commands, they said.

Miller is certain that other researchers will find ways to remotely attack the systems in the future. The software industry hasn't figured out how to write secure software yet, so there's no reason to believe car makers have figured it out either, he said.

The code in systems that can be accessed remotely -- telematics units, tire sensors, those using Bluetooth and Wi-Fi -- might have a lot of vulnerabilities, he said. "I'm sure that if people start looking, they would will start finding vulnerabilities."

That's part of the reason Miller and Valasek decided to make the details of their research public, including what kind of equipment, cables and software they used.

The full research paper and the custom software tools that were written to interact with the ECUs, as well as the code used to inject particular commands, will be released this weekend, Miller said.

"We want other researchers to keep working on this; on other cars or on the same cars," Miller said. "It took us ten months to do this project, but if we had the tools that we have now, we would have done it in two months. We want to make it easy for everyone else to get involved in this kind of research."

Concerns that the tools could enable people to hack car systems for malicious purposes are valid, the researcher said. However, if it's that easy to do, then they could do it anyway; it would just take them a bit more time, he said.

"If the only thing that keeps our cars safe is that no one bothers to do this kind of research, then they're not really secure," Miller said. "I think it's better to lay it all out, find the problems and start talking about them."

However, fixing the issues won't be easy because most of them are there by design, according to Miller.

Car manufacturers won't be able to just issue a patch, the researcher said. "They'll have to change the way these systems are made."

Right now, there's no authentication when car computers communicate with each other, because they need to react and send signals quickly in potentially dangerous situations, the researcher said. Adding authentication will introduce latency, so the systems will need faster processors to make up for that. Those processors would cost more, so car prices would rise, he said.

Toyota Motor Sales and Ford Motor Co. in the U.S. did not immediately respond to requests for comments.

Join the CSO newsletter!

Error: Please check your email address.

Tags Ford Motor Companysecurityphysical securityAccess control and authenticationencryptiontwitterToyota Motor SalesExploits / vulnerabilitiesIOActive

More about Ford MotorToyota Motor Corp Aust

Show Comments

Featured Whitepapers

Editor's Recommendations

Solution Centres

Stories by Lucian Constantin

Latest Videos

  • 150x50

    CSO Webinar: The Human Factor - Your people are your biggest security weakness

    ​Speakers: David Lacey, Researcher and former CISO Royal Mail David Turner - Global Risk Management Expert Mark Guntrip - Group Manager, Email Protection, Proofpoint

    Play Video

  • 150x50

    CSO Webinar: Current ransomware defences are failing – but machine learning can drive a more proactive solution

    Speakers • Ty Miller, Director, Threat Intelligence • Mark Gregory, Leader, Network Engineering Research Group, RMIT • Jeff Lanza, Retired FBI Agent (USA) • Andy Solterbeck, VP Asia Pacific, Cylance • David Braue, CSO MC/Moderator What to expect: ​Hear from industry experts on the local and global ransomware threat landscape. Explore a new approach to dealing with ransomware using machine-learning techniques and by thinking about the problem in a fundamentally different way. Apply techniques for gathering insight into ransomware behaviour and find out what elements must go into a truly effective ransomware defence. Get a first-hand look at how ransomware actually works in practice, and how machine-learning techniques can pick up on its activities long before your employees do.

    Play Video

  • 150x50

    CSO Webinar: Get real about metadata to avoid a false sense of security

    Speakers: • Anthony Caruana – CSO MC and moderator • Ian Farquhar, Worldwide Virtual Security Team Lead, Gigamon • John Lindsay, Former CTO, iiNet • Skeeve Stevens, Futurist, Future Sumo • David Vaile - Vice chair of APF, Co-Convenor of the Cyberspace Law And Policy Community, UNSW Law Faculty This webinar covers: - A 101 on metadata - what it is and how to use it - Insight into a typical attack, what happens and what we would find when looking into the metadata - How to collect metadata, use this to detect attacks and get greater insight into how you can use this to protect your organisation - Learn how much raw data and metadata to retain and how long for - Get a reality check on how you're using your metadata and if this is enough to secure your organisation

    Play Video

  • 150x50

    CSO Webinar: How banking trojans work and how you can stop them

    CSO Webinar: How banking trojans work and how you can stop them Featuring: • John Baird, Director of Global Technology Production, Deutsche Bank • Samantha Macleod, GM Cyber Security, ME Bank • Sherrod DeGrippo, Director of Emerging Threats, Proofpoint (USA)

    Play Video

  • 150x50

    IDG Live Webinar:The right collaboration strategy will help your business take flight

    Speakers - Mike Harris, Engineering Services Manager, Jetstar - Christopher Johnson, IT Director APAC, 20th Century Fox - Brent Maxwell, Director of Information Systems, THE ICONIC - IDG MC/Moderator Anthony Caruana

    Play Video

More videos

Blog Posts

Market Place